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EXTENT TO WHICH LEAST-SQUARES CROSS-VALIDATION ’
MINIMISES INTEGRATED SQUARE ERROR IN NONPARAMETRIC i
DENSITY ESTIMATION i

by

Peter Halll’2 and James Stephen Marron3

University of North Carolina, Chapel Hill

Abstract. Let ho, ﬁo and ﬁc be the windows which minimise mean integrated
square error, integrated square error and the least-square cross-validatory
criterion, respectively, for kernel density estimates. It is argued that
ﬁo’ not ho’ should be the benchmark for comparing different data-driven
approaches to the determination of window size. Asymptotic properties of
ho 'ﬂo and ﬁc 'ﬁo’ and of differences between integrated squarce errors
evaluated at these windows, are derived. It is shown that in comparison

to the benchmark ho’ the obscrvable window ﬁc performs as well as the so-

called "optimal' but unattainable window ho’ to both first and second order.

Shert :itle: Integrated square error and cross-validation.

AMG [1370) ocubgens classificatiom:  Primary 62605, Secondary 02E20, 62H99.

Keu worde and phrases: cross-validation, integrated square error, kernel,
least squares, mean integrated square error, nonparametric density-

cstimation, window size.
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1. Introduction. Let Xl,...,xn be a random sample from a distribution
with unknown density f on R, and let
4’
£, (x[h) = (mh) © ) K{(x-X,)/h}
i=1
be a nonparametric estimator of f based on kernel K and window h. 1
The problem of choosing h so as to "minimise error', in some sense, is
legion in the theory and practice of nonparametric density estimation.

Commonly, the criterion used to measure loss is mean integrated square

error (MISE),
* M(h) = [E(£ (xh) - £(x)}2dx .

See for example Rosenblatt [17]. This approach has its roots in classical

A

theory of nonparametric density estimation, where the window h is taken

to be non-random. Of course, the value hO which minimises M(h) depends

on the unknown density f. Any attempt to estimate this 'optimal'' h

must result in a window which is a function of the sample values. That
is, the value of h must in practice be a random variable. Bearing this

in mind, it seems to us that one should try from the outset to minimise

Integrated square error (ISE),
AR = [ (xlh) - £003x,

instead of MSE. If hO (a random variable) minimizes 4,and ho (non-random)

minimizes M, then E{A(ho)} 3_E{A(ho)}. In this sense, ho improves on ho'
K Let h be a ""data-driven' bandwidth, estimated from the sample in some

way. Our aim in this paper is to examine the distance between h and ho’

L,
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o and the distance between A(}A\) and A(}Alo). Of course, A(};) - A(};o).

u We ask: how much greater than the minimum, A(}A\o), is A(}"\l)?

o There are at least two approaches to constructing }sz the classical
argument, which essentially tries to estimate ho; and least-squares

n cross-validation (Bowman {2}, [3]; Rudemo [19]). The cross-validatory

window is that value hC which minimizes

2 -1 &
CV(h) _j'fn(x]h)dx - )
. 1:

where fni(xlh) z {(n-l)h}'1 z K{ (x~XJ.)/h} is the kernel density estimate

j#1
obtained by leaving out sample value Xi' The intuitive appeal of cross-

RS

validation is that it sidesteps secondary issues such as theoretical

Y
properties of MISE, and goes straight to the heart of the problem, by
minimimizing an estimate of A(h) - ffz. (Notice that CV(h) is unbiased

- for M(h) - ffz.) We shall show that this directness pays dividends. In

a range of situations, including the multivariate case, the difference
between A(hc) and A(ho) is of the same order of magnitude as the difference

-j between A(ho) and A(ho), under minimal smoothness conditions on f.

- (The common order is n_l.) In this sense, the classical "best but un-
achievable strategy' of using ho is no better than the achicvable

‘ strategy of least-squares cross-validation. Furthermore, ncither ho nor
ﬁc consistently outperforms the other, since probabilities

» N N

. P{a(h.) > A(ho)}, P{ath.) < a(h))}
both converge to strictly positive limits.

e
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One class of competitors to hC consists of two-stage ("'plug-in'')

immm .

procedures, which aim to estimate the constant <, in the asymptotic

-1/

formula h0 ~en > (valid in one dimension). They cannot be expected 1
to perform better than if the precise value of ho had been available.
h. They can produce windows ﬂ for which a(h) - A(ho) is of a larger order

of magnitude than A(ho) - A(ho), depending on their construction and the

PPy

. extent of additional smoothness assumptions.
l We shall close this section by relating our contributions to ‘
recent work in the area. Theorem 2.3 of Rice (1984) is close to our

Theorem 2.1, but in the context of nonparametric regression. Asymptotic

‘ first-order optimality of least-squares cross-validation in density |
estimation has been established by Hall [11], [13] and Stone [21];
Stone's work assumes minimal conditions on f. Other forms of cross- {

l' validation in nonparametric density estimation have been considercd by !
Habbema, Hermans and van den Broek [9], Duin [8], Chow, Geman and Wu |5], {
Bowman, Hall and Titterington [4] and Marron [14], [15]. tThe last three

D Papers take quite a general view of the principle of cross validation. .
A recent survey by Titterington [22] scts cross-validation .nto contost
as a smoothing technique. First- and sccond-order propert.o ot tre

’ diffference between ISE and MISE have been examined by Bichei an Ko lats .
[1], Rosenblatt (18], Csdrgd and Révész [b] (pp. 2252291 ana lu..
[12]. Finally, we should point out that although 1: MGG e

4 such as MISE, are very widely accepted, there do exast aluerma oo *
examples include supremum measures (Silvernan {20)) and | ! TICA S TS )

(Devroye and Gyorti [7]).
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2. Results. For the sake of clarity and brevity we shall state and

prove our main results for the case of one-dimensional data, in the context
of a positive kernel. Towards the end of this section we shall show thut
the theorems are readily extendible to any finite number of dimensions,

and to more general kerncls which may become negative in order to reduce . !
bias.

We 1mpose the follow.ng conditions on K and f:

(2.1) K is a compactly supported, symmectric function on R with

OPET

Holder-continuous derivative K', and satisfies
[K =1, [ 2’K(z)dz = 2k # 0.

€
for some

(A function g is Holder continuous if {g(x) - g(y)| < c|x-y

¢, £ > 0 and all x,y.)

PN Y

(2.2) f is bounded and twice differentiable, f' and f'" are bounded and .

integrable, and f'" is uniformly continuous. ]

Define integrated square error A, mecan integrated squarc error
M = E(4), and the cross-validatory criterion CV as in Section 1. Set D -

A-M, and notice that CV =A+6 - ffz, where

1 n
l,fl = - -
8= ff - n izl fni(xi)

Recall that ho’ hc and hO minimize &, CV and M, respectivelyv. OCbserve that

M(h) = (nh)_L}'KZ + (1-n_1)j { [K(z)f (x-hz)dz) dx

- 2] f(x)dx [ K(z)f(x-hz)dz +[f" .
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We may derive expressions for M'(h) and M'(h) by differentiating under

the integral signs in this formnula. In that way we may deduce that,
with clzzf K® and ¢, = K2 ](f”)z we have

M(h) = ¢ (h) 7t + ch® ¢ ot@) Tt et
M'(h) = 2¢, (mh®) 7! + 120,07 of (h>) 7! + h?)

-1/5

as h~+0 and n»>«., (Consequently, ho"con where ¢, = (C]/4c2)1/5, and

-2/5 _ -3 2
where Cy = chco + 12c2co . Set

M”(ho)“csn
L(z) = -zK'(2),

oz B JUKGIKE) - L))l Yy

+

(4kco)2{j(f")2f - ey,

Ze e )3yl ke DR - (e’

bt

The structure of our arguments is very simple, and so we shall
prove our main results here. The lemmas in Section 3 supply all the rigour
needed, and we shall refer to them as required.

First, we prove a limit theorem for ho - ho. Observe that

A ~

(2.3)  0=a'(h) =M () +D'() = (hyh M'K*) + D'(h)

0 o
where h* lies inbetween h and h . By Lemma 3.3, h =h_ +0 (n_l/s-t) for
o o} 0 o} p
) ) ~ -7/10
. o, . . . = ! =D (
some ¢ >0, and so by Lemma 3.2 (with h ho), D (ho) D (ho) + Op(n ).

W 2 7 { .
But Lerma 3.4 declares that n7/10D‘(hO) »N(0,:5), and so n//IOD'(hO)

must have the same weak limit. Since h*/hj P 1, it is casiiy shown that
0

) -2 . -2/5. . . . -
M'(h*) = ¢ /5 + o_(n /D). Combining the cstimates from (2.3) down,

P

el b
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we conclude that

n3/10 " )

D 2. -2
(2.3) (hy ~hy) * N(0,05¢5 ) .

Next we prove a limit theorem for hC-hO. Notice that

(2.3) 0 (N'mc)=BPOk)4-D%hJ + 5 (h) - W

[}

(he - hM'(*) + D (h) + 6' () :

where on this occasion h* lies inbetween ho and hc'
Using Lemmas 3.2 and 3.3 in the same manner as before, we find that
' ' =N ' -7/10
D'(h,) + &' (h,) = D'(hy) + &'(h)) + o (n
-7/10
- [ N =
thn[)ﬂb)+v @& %ﬁn ).
-2/5

N + op(n

). Lemmas 3.4 and 3.5 imply

Since h*/hO E 1, it is easily shown
2/5

that M''(h*) ). Using these results in (2.5), we find

that

~

0=1C(0

.- ho)csn‘z/S (1+o (1)} + op(n‘7/10),

-3/10

and soh_ - h =0_1(n ). This means that
C 0 P

v . 2/5

-~ th*y = - '7/10
(he = hOM'(h*) = (b, - h )can

)

+ o (n
p(

and so we may refine (2.5) as follows:

- 2 \ 2/10.
o= (h, - h)egn /5, D'(hy) + 5'(hy) + o (n /10y

We already know from the previous paragraph that

Cm . =2/5 - -7/10
0= (ho hO)c3n + D'(ho) + op(n ).
Subtracting: %
e e 225 L v L =7/10
0= (hc hO)LSn + 8 (ho) + op\n ).

-------- ial LI U ST W Y P LI S PO U W Wy S S L W
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This result and Lemna 3.5 entail

-2

2310, )

. N
.0) c ho) 5 T\(O,ccc

We pause to combine (2.4) and (2.6) into a theorem.

THEOREM 2.1. Under conditions (2.1) and (2.2),

-7
&

kS ~ -
/100 2.-2 2

D 3/10
(ho ho) = N(O,ooc3 ) n

and (hc - ho) QN(O,OiC

Having derived these formulae, it is only a short step to describe
the amount by which ho and hC fail to minimize integrated square error.
For that purpose we impose an additional condition on K:

(2.7) K has a second derivative on R, and K" is Holder continuous.

Let h denote either ho or ﬂc’ and notice that
ath) - ath) = 3theh )%y

where h* lies inbetween h and ho. In view of Lemma 3.6 and the fact

-2/ -0
that h*/h_ B 1, a"(h*) = M'(h*) + o_(n 2/5y . But MY(h*) = con o0 s

3
t
-2/5 . ~ -3/10
0 (n /),zmdso,sumch—h =0 _(n ),
P 0 P
. " cL2 -2/5 -1
Ath) - 2(h ) = }(h-h c.n T v o in Y.
th) ( O) :(h O) 3 b
Our next result is now immediate from Theorer. ..
THEOREM 2.2, rider comalzlone (J.bly, 2000 0 o7,
, > - D
n-'th ) h ;- Lt . ..
UJ ' 9] t ~ i N [ 1
RIMARK.
3 1 B A . . . 2 . .
- i l [ AN . PN }H WOV T
Sovher Jdinen cionis wta, acthoush the e Yot Tt e
PR o TP N o ‘. N
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In the case of p dimensions we should define L by

D
L

L(z) - -p (1)

KL (),
i=1 1
where z = (1(1),...,:(p)) and Ki(z) = (3/?z(i))K(z). We assume p-

aincnzsional versions or (2.1), (2.2) and (2.7), and define

- sl . . . 2 2 2,2
2K J:k ) N(z)dz (not Jdepending on 1), Cy - fh » €5 - K j(v“i) R

¢ (PC]/4c,)1/(p+4), ¢ = p(prlcc TP L e
L O
> p-2 . v , 2
-5 B SpZCOp “(jfz) [{/K(y+2){K(z) - L(z)idz]"dy
2, )
+ (4kco)“{Jf(V2f)Z - (JEvTH)T

2

2 p-2 2 e 200222,
sp’c.P (E5 (L% + (4ke )P [F(E70)° - (JE70)) .

Cooto

5

Theorem 2.2 holds as before, and the only change to Theorem 2.1 is that

3 2 2 ;
tne factor ng/lO should be replaced by n(p+“)/“(p+4).

220 Sennore! erzles The forms of Theorems 2.1 and 2.2 remain unchanged
of we admit more general kernels. To illustrate this, we shall confine
to the cuse p=1. Higher dimensions may be treated similarly.
>

it & 1~ chosen so that [K=1 and for some integer t - 2,

U - L Pt
TRizhz =0 for 1 < j < t-1, jz'R(z)dz # 0,
Then the aeahicl 1oalso enjoves these propertics. A version of Theoren 1.

Y

3220+ .
n 218 ),;md Theorem 2.

S 3700 . .
aedds oan which n 1> replaced by 2 nolds as

Doetore.,

3. oo o T e s pnesotrhss PO the sake ol saaplicity we shall
contine attention to the case of positive nericls and one-dinensions:]

it We shail adhere to our convention, disdiesed in section 1, that

“hetter'! windes.. hoare tnosce which give smaller integrated squire error.,
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LEMMA 3.0. Under conditions (2.1), (2.2) wnd (2.7), ol Sor arg

O-~a<bow

b

(3.25) sup iD”(n-l/St); =0 (n_z/s).
a<t<b P

PROOF. fFirst derive an analogue of (3.1), using an almost identical

arguaent
' 1/7 ’1/5 vZQ/
sup  En’/eD"(n t); < C(a,b,).
n;a<t<b

Then tollow the proof of Lemma 3.2, to conclude that (3.25) holds, and

-2/5-¢

in fact the right-hand side equals Op(n ) for some € > 0.

3
2 A

e

. . ‘e A
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= 22k R [ f9F + o(hY),

vy = kDT D - L(iﬁl)}f"(x)dx]zf(v)dy + 0%

r

2 . 2
= 4k"h® | (fM)7f + o(h).
Result (3.21) now follows from (3.23).

LEMMA 3.5. n'/loc'(ho)f;N(o,oi).

PROOF. The martingale methods and Cramér-Wold Jdevice used to prove

ferma 3.4, are also applicable herc. The argument is based on (3.6)

instead ot (3.5). We shall prove only the analogue of (3.20):

) -

RSYAR) - _2 1 2
V3024 n)/“var(Tl) -2 col(ft ) [iK-L)".

Jie anadlogue of 130210, which declares that n9/

1

A bomdt o ason (20210, follows as before.

prove P30 23 ) notice that with 3 = Bl - 35, b= b1 -, and

. T T . BN . 5 . - . A )
S0 N Tl PN SRS 5 N

> .
var(T,) converges to the
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(3.22) var($;) = n “h (f )[(2;:] S 2ipdg - JigEy Py *oigy)
+o(h h),
where
100 = JK(2)K(y+2)dz, 5,() = [i(2)L(y+z)dz,
a3ly) = [K(z)L(y+2)dz, Bg(Y) = JL(z)K(y+z)dz = 3:(y).
.. . .2
Since [:,3, = [¢3  then
I(ZBZ_ZQ’Q - 23,8 +B’3*'1D)=7I(° - )‘2
17 97173 7 ety TR Tty T oAy T oig)
and so (3.20) is immediate from (3.22).
To prove (3.21), observe that
(3.23)  var(s,) = mh )% n, - V9
) 2 o} 2 17’
where
v. = E( SR (2EF (x|h) - Eg (x'h) - £(x):
i ! h 7**"'n B X c
x-X 1
+ L(—E'—){f(x) - Efn(x{h)}]dx})
As h~0,
. 'Ls s 2 2
Etfn(xm;} - f(x) = kh7f"(x) to (h7),
.. 2 2
};1gn(x}h)} - f(x) = 3k h™f"(x) + o(h").
Estimates of this type give:
;,.';.'_'-_".',..._"."_':;;.: .:L: <' A':- - PO A A Ma o als A‘n: PRI T SR R T P A L B Smmmcduadion
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3 = = ‘ - X YIx b o=
If we write S, = } } A(Xi,Xj) and S, = J a(X;), then L{A(xi,xj)‘xj, 0

1 j<1 1 ]

almost surely for each j < i, and so far any real c and d, the variables —g?
1i-1 iy

Y. = ¢ -21 A(xi,xj) +da(X), 1<ic<n, .

J -

¥ |

are zero-mean martingale differences with respect to the -ticlds

F{X .,Xi}. In this sense, ¢ §; +d S, -

Y. 1s a martingale.
2 1 ‘

17"

N1

1=1

The argument leading to Hall's [12] Theorem 1 shows that ¢ 5, + d S,

!
. . . . . : . N o
1s asymptotically normally distributed with variance ¢ vur\bll + d7 var({s,).

This property, together with the Cramér-Wold device, permits us to

complete the proof of (3.19) by showing that

9/5

(3200 n*Pvar(s)) » 2 N (EY) JUK(r)iRG2) - Lizjdz]"dy,

.21y n?Pvar(sy) - o KEiemd - o

Let
vy (6Gy) = ELIK(E) - BRI BRE) - BRG=)00,
e} ¢} (6] e}
. x-X xX-X_.. y-X v-X, .
v, 06y) = EHLGS) - LG 0.3 - BLEE)
(o} @) e} 0
. -X X=Xy o, VX ST G o
G0Gy) = EHKESD) - BREADY 1L EY) - BLEY T "]
3 ho By ho ho -
and ‘7'4()())’) = ‘('3(.\")()' Then "é
]
. . _ -4 - _,.). R R . o <
var(s,) = (nh) "n(n-1) [f (2] - v g s iyt T osig). ]

The functions . arce covariances, and caca may be expressed in the form
i

E(UV) - E(E(V) for variables U and V. A little algebra shows that

' .
W

the term E(U)L(V) makes a negligible contribution, and in fact

............
" . - P - - . - N T <
LA R ALY I I W ST ot




o oo S A i st el LA i e R ae v anah e hedt AR AL I AR A g PRI Aunt s Mt Nl & ar e~ A e o A RAE s a-dl RAL SR St alu- b

Also by Lemma 3.2, A'(h ) =D'(h) =0 (n-S/S-a)’ and so
o o D

-3/5-¢

(5.18)  on ) = M'(h) - M'(ﬁo) = (h -h M'(h*),

where h* lies inbetween hO and ho' As in Section 2, M'(h*) = ¢ n'z/vD

9/
o (n '/D). Using this estimate in (3.18) we conclude that

-1/5-¢

'.3">"U

h-h =0 (n

o0y b ), as required.

. , ~ P
To treat lhc-hol, notice that h /h_ ~ 1. Therefore

i

Vr(h) = Qv (h)) - QU = o' (h) - 8 () ¢ 8T (h) - £'(h )

-3/5- e

1]

M'(h ) - M'(h )+ 0, (n

-3/5-¢

again using Lemma 3.2. But CV'(h)) = M'(h,) * O (n ), and so as before
4

-1/5-¢

it follows that h -h = 0_(n ).
o ¢ P

LEMMA 3.4. n’/lon'(ho) 3 N(O,og).

PROOF. We shall start from decomposition (3.5), and prove that

n9/10 2 2/

Dl(ho) N(O €% 4). Now, the argument leading to (3.9) gives

“9/10y ' fhercfore by (3.5),

o2 - -13/5 -
t153(ho)f 0(n ), and so SS(ho) op(n
it suffices to show that

9/10 9/10

- D .
(3.19) (77778, n7UUS) < (29,5,),

where S.l = Si(ho) and Z1 and Z, are independent normal variables with
2
zero means and variances adding up to c;g§/4.
Our route to (3.19) uses the argument of Hall (1.2}, und s0 we

omit many details. The variables S; and S, are uncorrclated.

e M . A Al e ———— e, .

i — S - . i AN A 1 RE &
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For a <1lim nl/5h1<:b, suppose .fﬁ
-1/5-¢5 “1/5-¢, -

hl-n =ttt g < h1 +n <ty o

where t, - n % for each i. In view of (3.16), to finish the proof

Y1 T
of (3.15) it suffices to check that

- _ - P
sup n//loiD'(n 1/Sti) - D'(n 1/Stj){ + 0,

(ti,tj)eT
- 1/5-6')
where T is the set of all pairs (ti,tj) with 0(<ti—tj <n “and 1 < m.
For any n>0,
P{ sup n7/10|D'(n-1/5t.) - D'(n'l/st,)l > nl
(t.,t.)eT 1 )
1]
25
(3.17) < 7 B WY@y s o Vi)
(ti,tj)eT 1 J

-24 HZ(G'CZ‘I/S) '1/5‘52‘6'13(1

<Cn (n ) ’

Z(l‘-“)']/‘r):
using (3.3) and the fact that the number of clements in T is of order n -

By choosing % sufficiently large we may cnsure that the term in (3.17) converges
to zero as n~>«, This proves (3.15). A similar partitioning argument may

be uscd to prove (3.14).
LEMMA 3.3. For some o >0,

]h h o+ fﬁ_-h ;=0 (n_l/b_i).
0o o ¢ o p

PROOF. First we treat !ho-hO[. It is not difficult to prove, using

techniques of Hall {11} (p. 1160), that ho/hO B i. Therefore by Lenmi 3.2,

. oAt - ,4‘ — ) - _— ' T . i ~3/5_r
L (ho) = A (ho) A’\ho) M \hoj M (hOJ + Op(n ).

L
-

e et ool s, . e B o X ST AR . G N o
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_16_
and where
£
W) - W D] < st
Hence, for m=2,...,2¢,
‘ » - -1
‘,cwnm(ng/101821(n 1/ss) - 521(11 /St)})l <

~ €M
s U TN

This completes the proof of (3.9) and hence that of (3.3). The same

type of argument may be used to prove (3.1), (3.2) and (3.4).

LEMMA 3.2. For some €>0 and any 0<a<b<w,

(3.14) sup {lD'(n-l/st)l + IG'(n—l/St)!} =0 (n_S/S'E) .
a<t<b P

Furthermore, for any €, 0 and any non-random h1 asymptotic to a constant
1/5

’

multiple of M

n7/10
-€
hll <n 2

(3.15) sup

PROOF. We give a proof only for D'. The proof for ¢' is similar. To
check (3.15), note that using the decomposition (3.5) of D', the Holder
continuity of K and I, and the fact that both of these functions have

compact support, there is an a> 0 sufficiently large that

(3.16) sup DY) -y =om™ .
a<s<t<Zb

s-t|an S

.................................
_— S AR S RIS ~ .
f an arlan'm PRI G, L0 NS LT R ALY W § AP0, LA I, PR L WS P SUILIPRL LI I S

o Py -pm e ey e Do
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E[V, ()] = 0,

and where

-2/5

(3.13) [V, - V()] < n

| A

|s-t]

(shasiRease . g0

2

to check that for m=2,...,2%,

|cumm(n9/1°{521(n‘1/ss)

AR AR > aam

property of cumulants,

9/10

MO

lcumm(n

n
- ]n“m/lo Z

1=1
m

Crll‘m/lo[n‘Z/S'S_tIC]

| A

1-m/2 m

= Cn Is-tlc ’

The verification of (3.9) is quite

Jdifferences will be noted. Write
n
S..(n %) =nt T ow ),
31 AWy
i=1
where
E[W ()] = 0,
e e e e o Tl e T T e T e e e e

By a cumulant expansion of the 22-th moment, to show (3.8) it is cnough

- S;;(n

where cumm(-) denotes the m-th order cumulant. But, by the independence

{521(n-1/ss) - S, (0

cum (V. (3) - V, (i)

where the inequality follows from (3.13).

b

sl

\

t

€

3

el 0

1]

ot

L

£an

VS50gn| < cfs-t]

b

50h|

This completes the proof of (3.8).

similar to that of (3.3) so only
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Hence, <
X, -X.

3.1 {U,(5,0) - U] < st e P T 5 RIRRET

I
But,

9/10 -1/5 2175410
E[n {Sll(n S) - Sll(n t)}]

(3.12) =Sy T EIHUGLI D - UG

) ) i ) . \
"'{US(IZQ’JZQ) Ut(lzi,JZQ))].

Rearrange the terms on the right side of (3.12) into 44 groups where the
term indexed by il’jl""iZQ’jzz is put in the m-th group when there are
exactly m distinct integers in the list il’jl""JZQ’jZR' Note that the
cardinality of the m-th group is bounded by Cnm, and by (3.10), each term

is 0 in the groups 2%+1,..., 4%2. Hence, by (3.11) and integration by

substitution,
9/10 1/5 1/5. .. %
E(n {Sll(n s) - Sll(n t)}]
11275 2 om 2% 28/5-m/10
< Cn y nifs-t]""" n
m=2
2cq
< CZIS‘tl ’

and the proof of (3.7) 1s complete.
To verify (3.8), note that by Taylor's theorem, (2.1)(2.2) and the

fact that I. is also svimetric and intcgrates to 1, for t ¢ (a,b)
- - - @
26f_(x|n"1/0) - Bg_(x|n Sy ~ oyl <an?®.
Hence SZl may bc written

n
-I/St) - n-l Z

S,
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-1 . . ) :
T.., - 2{n(n-1)h} z z {B (X,,X.) -b (X.) -b (X,) + Moty
L 1<i<j<n £ 1) (A | 27

n
1%1 by (X)) - u

T, = (nh)"}

2
" - f(X) + f£°1,

L
By(x,y) = Kulx-y)/hi, B,(x,y) = Li(x-y)/hi, b (x) = EiB (x,X)], u,
= EtbQ(X)}.

To prove (3.3) we shall show that for some ¢ >0,

3.7 e s Mo L s P < cpseeh

n9/10

(3.8) ks sy - s, m Pt < epse

3.9) e s sy - sy @ P03 < epse)

Similar inequalities may be established for the functions 512 S5 and
832.

To verify (3.7), note that S11 may be written as

- -2 e .
s P =t T UL
1<i<j<n

and Ut(i,j) satisfies
. . - .. -

By the compactness of support hich without loss of generality may be
taken to be {-1,1]) and the Holder continuity of K, for s,te (a,b),

X-X. X-X

-X. x-X. b .
/5 -2 L X ‘ -2 . i .
5 JR(— YK (= Jdx;,

n 175t n 1 Dt

, y -1/5
5177 Ko K—pe)dx - (71
J n 1 S n ]/55

€ _y/n
Cis-ti @ o,

R S
- 1-2,2) 175,

L ._ '.... - . . . <t -...'-.' -." S
PUSPY N RO P SPIRPE P, L S VLR TR Y

CRE SRS A e Sl A S FAs A Al A2 R R4 A

PP O

.
v e

2

€ e w_2 s
L T B,
)
L-_l

Ll

v
Ll MR

Al
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(3.5) D;(h) = -(h/2)D'(h) = S;(h) + S,(h) + S;(h),

=8, - S

1 =511 7 Sy2s S5 % Sy1 * Sy 537 531 7 S3ps

2 XXy XXy e R X=X
2mh) ¢ § ] KD - B MK - EKG) K,

S,; = )
o 1<i<j<n
: _2 X'.\l (—X X'X. 7 \-—X ‘
.. S, = (mh) . I § JUKERD - BEKCRE ML) - ELG))
- <1<J—<.rl

-

. _ X=X, v
C D - BEDKGD - KED) ax,

b n x-X.
o S,; = )t T fIKEED) - EKEPD H2EE (x[h) - Bg (xIh) - £(x)dx,
i=1
{ ) 1 n x-X.l x-X
57 @7 [ S - BERDIE) - B X[,
o x-X. ) x-X, X2
S5, = (nh) 121 JikED - EKED - B - B Tdx,
s, = @n)? J f[{K(x_Xi) By - e,
\ 2 i=1 h h h h
o x-X. xX-X .
& i x-X iy X-X .
T'. - BK() - BKEEOHLOED - LG Hax.
A similar argument produces the decomposition
o (3.6) S5, () = (/2)8'() = T () + T,(0) ,
. where T, = Ty;-Typs T, = TpyThy s
3
g
-
;

Pl |
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3. Lemmas. The lemmas below were required for the proofs of Theorems E:

2.1 and 2.2. In Lemmas 3.1-3.5, we assume conditions (Z.1) and (Z.2). ;i

The symbols C, C1 anc C2 denote generic positive constants. R

LEMMA 3.1. For each 0 < a < b < » and all positive integers 1, lﬂ

_._j

. 7/10 -1/5.,,2% f!

(3.1) sup E[n D'(n )" < C, (a,b,2), o

n;a<t<b =

3.2)  swp El/Per@m 5% < ¢ a,b,0) . =]
n;a<t<b

Purthermore, there exists € > 0 such that

£,
3.3y En”/Om @S - pam o1t < C,(a,b,0)|s-t] L

€,4
(3.4) Eln"/ @55y - 61 Y54t < C,(a,b,2)|s-t] 1

whenever & < S < t < b.

PROOF. We begin by decomposing D' and §'. Let g (x|h) = mhy 1S L{(x-X,)/ 07,
i

and observe that

- ] = - -
(h/2)8' () = [(£,-F) (£, g)

ﬁ 2
;. = - - T -F -
s [(fn Efn) f(fn I:fn)(gn Egn)
a -2 T2 - e _Tf
: + f(fn Efn)(ZLfn Eg f) + j(gn hgn)(f Efn)
5 + f(hfn-f)(Efn-Egn).
1 By expanding f(fn—Efn)Z as a sum of intcgrals of squares plus o sum

of integrals of products, and expanding j(fn—Efn)(gn-Egn) mn a similar

way, we conclude that
3
h
N
;
-
}.. .
oo e T S S I
R R R T R s : A NS S AR ST S

LI WA WP IDNY AP W LA S P S Ay oy
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probability one. It is easily shown that

(n o "o c o
say, where (Z;»Z,) has a joint normal distribution with P(Izll > 1z

oo Consequently, the limit i
)
11 h
im P{A(ho)3>A(hC)}

n—>c

>y LT v,
. oo

\
|
exists, and is strictly positive. |
|
|
|
|
|

|

- . - e e P . [N . P
S . . . - - T . . . - .- . , .".. L. o
. . cLr . . . R . . - . . - . . = . - N
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Let h be a window satisfying h/hO 5 1. Assume conditions (2.1),

(2.2) and (2.7). Using the argument leading to Theorem 2.2, we obtain:
(2.8) 05 am) - 8y = d-h)len w0 (1)),

We shall consider various possibilities for h.

(1) We might explicitly estimate the constant SR in the asymptotic

-1/5

formula ho ~cn , and take h to be the resulting window. This

. o)
?_ requires estimation of f(f")z, perhaps by integrating the square of a

i kernel estimate of f'. Such an approach is really a global version of
Woodroofe's [23] two-stage procedure. Under the smoothness assumption

(2.2), the rate of convergence of such an estimator can be slower than

-€ . 2
n - for any given ¢ > 0. In consequence, the error (h—ho) may converge

to zero in probability at a rate slower than n-¢/5-2¢

-4/5-~2¢

, and by (2.8),

Ath) - A(ho) may be no smaller than order n On the other hand,

if h is the cross-validatory window hC then A(h) - A(ho) is as small as |
)

N~ under the minimal condition (2.2). ,
(i1) The procedure outlined in (i) is motivated by a desire to estimate
ho' Following that philosophy, we would be doing extremely well if we

actually knew the value of ho' But according to Theorem 2.2, even if we

took h:=ho we would hardly do any better than using the cross-validatory

window hc’ since 1n both cases the distance of integrated square error

from the minimum would be order n 1.

(i11) If K is a positive kernel then by the Cauchy-Schwartz ineguality,
Z b

]
o ST (This is true in any dimension. Notice that |17 = j(K-1.)".)

[§8)

In this scnse, taking h:=ho does result in a marginal improvement over

cross-validation. However, the improvement is not available with

PR e




vy = sk h® [ KED) + LED) £ ()dy dx ¢ o(h”)

= -2k h> [ £'f + oY),

2
<

vy = ke nD? FEED + LEDH 0] Ty + o)

= ak’h® [ (% + o(0%).

Result (3.21) now follows from (3.23).

n7/10

LEMVA 3.5. 5 (h,) IN(0,02).

PROOF. The martingale methods and Cramér-Wold device used to prove
Lemma 3.4, are also applicable here. The argument is based on (3.6)
instead of (3.5). We shall prove only the analogue of (3.20):

9/5

(3.20) 0 Pvar(r) - 2 ¢t (£ f(K-1)2.

The analogue of (3.21), which declares that n9/

“var(T,) converges to the
e
same limit as in (3.21), follows as before.

To prove (3.24), notice that with B = B, - B,, b = b, - b, and

17 P2 1
WE -,
-2 e v . . 2
var(T)) = Z{n(n—l)hoJ n(n-1E{B(X{,X;5) - b(xl) - b(X,) + Wl
7 - ; 2
= 2= BB, - 2 7)) - 3

2

_ ) 5
M W C BIRC(N )G
<n hO EAB (-\1,)\2)J

_) L v v )
= ho " [JKEED - L&D Teofdx dy

)

. - ’.)_ ’ ‘)
"o “hol(}i“) K1)
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LEMMA 3.6. Under conditions (2.1), (2.2) and (2.7), and for any

0<a<b<om,

~2/5

(3.25) sup lD”(n-l/St)I = op(n ). .

qipib

PROOF. First derive an analogue of (3.1), using an almost identical

argument :

-1/5

28
swp  EY/2pr(n %ty 7 < ca,b,p).

n;aipib

Then follow the proof of Lemma 3.2, to conclude that (3.25) holds, and
-2/5-¢

in fact the right-hand side equals Op(n ) for some > 0.

. - * -t - . . il

v A L SN BN :
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